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Green’s Function Treatment of Edge
Singularities in the Quasi-TEM

Analysis of Microstrip

VASIL POSTOYALKO, MEMBER, IEEE

Abstract —A new Green’s function approach to the quasi-TEM amdysis

of microstrip is presented. By expressing the charge density on the strip

conductor as the sum of a singular term, derived from the consideration of

a Motz expansiou, and a continuous term, the integrat equation defining

this charge density is transformed into an integral equation for the

continuous term. An accurate numerical solution to this new integral

equation can he obtained by approximating the continuous term by a

low-order unit-pulse expansion. It is seen that the numerical scheme

developed in this work is both easy to implement and rapidly convergent,

thus making it an excellent choice for use in microwave CAD packages.

I. INTRODUCTION

u NDER THE ASSUMPTIONS that loss is negligible

and that the mode of propagation is quasi-TEM, the

characteristic impedance 20 of microstrip is given by [1]

1
20=

c(cca)l’2
(1)

where c is the velocity of light in free space, C is the

electrostatic capacitance per unit length of microstrip, and

C. is the electrostatic capacitance per unit length of the

structure obtained from microstrip by replacing the dielec-

tric substrate with air. A wide variety of methods have

been used for the numerical evaluation of C and C= for

both open and shielded microstrip (see, for example, [1]-[8]

and the references cited therein). If sufficient computing

resources are available, any of the methods cited above can

be used to generate accurate design tables or design curves

which relate 20 to the substrate dielectric constant and

line dimensions. In view of the current interest in the

computer-aided design (CAD) of microwave integrated

circuits (both hybrid and monolithic) [9], attention is

focusing on numerical methods which are not only capable

of the accurate one-off calculation of 20 but are also well

suited for use as part of a fast and flexible microwave
CAD package. Green’s function techniques have been

successfully used in microstrip analysis programs [10] and

thus appear to be good choices for use in general-purpose

microwave CAD packages.

In the mathematical modeling of microstrip, the strip

conductor is often taken to be of zero thickness. It is well
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known from the study of Motz expansions [11] that at

edges of such a mathematically idealized strip both

charge density and the electric field are singular. In

the

the

the

application of numerical techniques to problems involving

edge singularities, special consideration of the singularities

can often greatly speed the rate of convergence [2], [3], [5],

[6], [12], [13]. By employing an analytic approximation for

the charge density near the edge of the strip conductor, a

new Green’s function approach to the numerical analysis

of microstrip is developed in this paper. It is seen that this

new approach is both rapidly convergent and easy to

implement, thus making it an excellent choice for use in

microwave CAD packages.

II. THE GREEN’S FUNCTION TECHNIQUE

For an open microstrip of zero thickness (see Fig. 1), the

capacitance C can be expressed as

C=/”’* u(x)dx (2)
—w/2

where the charge density U(x) is the solution of the follow-

ing Fredholm integral equation of the first kind:

/“’2 G(~-~’)u(x’)~~’=1, +<;. (3)
—w/2

Here, the kernel G(x – x’) is given by [14]

G(x-xf)= ‘:,:)

. ~ ~n-1 in

[

(x-x’) 2+4n%’

(x - x’)2+4(n -1)’hz 1(4)
~=1

where K, referred to as the partial image coefficient, is
given by

1–6,
K=—

l+cr”
(5)

By exploiting the symmetry of the microstrip structure

about the line x = O (o(x) = U( – x)), eq. (3) reduces to

4((‘“2 G x–x’)+G(x +x’)) IJ(x’)dx’ =1,
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Fig. 1. Cross section of open microstrip.

The capacitance C. can also be defined via the integral

appearing on the right-hand side of (2). However, in this

case, the charge density U(X) is the solution of the

Fredholm integral equation of the first kind obtained from

(3) (or (6)) by replacing the kernel G(x – x’) with the

kernel G.(x – x’), given by

G=(x –x’) = ~(21nlx-x’1-ln[ (x-x’)2+4h2]).

(7)

G. is simply the Green’s function for the classical image

problem.

The ideas to be discussed in the rest of this paper hold

true for the calculation of both C and C.. Thus, only the

calculation of C need be considered explicitly. General

methods for the numerical solution of integral equations of

the type described above are well known (see, for example,

Lean et al. [15]). In essence, these methods involve the

approximation of U(X) by a finite sum of the form

N

u(x) = ~ alu, (x) (8)
,=1

where u,(x) (i=l,. . . . N) is a set of known orthogonal

expansion functions and ai (i= 1,. c ., N) is a set of un-

known coefficients which are to be determined. The a,
(i=l,.. ., N) values are determined by first replacing u(x)

in the integral equation (3) (or (6)) by the sum given in (8).
The integral equation is then reduced, using some standard

method such as method of moments or Rayleigh-Ritz, to a

system of N linear simultaneous equations for a, (i =

1,. ... N). This system of equations can be easily solved

using standard methods (e.g., Crout factorization [16]).

Once the a, (i=l,. ... N) values are known, an approxi-

mation to u(x) can be obtained from (8).

Taking Ui(x) (i=l, - “‘, N) to be a set of unit pulses

gives rise to a piecewise constant approximation to a(x).

This widely used approximation [14], [17], [18] is fre-

quently referred to as the substrip approximation. If the

substrip approximation is used in conjunction with the

collocation method, then the elements of the matrix repre-

senting the integral operator appearing in (3) (or (6)) can

be evaluated analytically and easily coded into a computer

program. The charge density on the

hibits the following behavior [11]
,,

‘(? - E &_ ,xl)’’”-’)/2
n=o
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strip conductor ex-

where the c. (n=O, . . . ) values are constants. The first

two terms of the above series both vary rapidly as 1x1~

w/2 –; thus, U(X) cannot be well modeled by a low-order

unit-pulse expansion. This explains why the substrip ap-

proximation converges only slowly with increasing N.

In order to accurately model the singular behavior of the

charge density near the edge of the strip conductor,

Silvester and Benedek [12] made the following choice for

u,(x):

“(X)= (();”2 ’10)

where

f,(x) =1. (11)

By employing the method of moments with even-order

Legendre polynomials as weighting functions, they were

able to calculate reasonably accurate C values using only a

two-term series approximation for u(x) (i.e., N = 2). Simi-

lar in spirit to the work of Silvester and Benedek is the

work of Gladwell and Coen [13]. The latter applied

Galerkin’s method using the following expansion functions

T2, (2x/w)

“(x)= ((;)’-x’)’’”

i=(),l, . . . (12)

\\.LJ 1

where T2, is the Chebyshev polynomial of the 2i th order.

They were above to calculate accurate C values using

low-order series approximations ( < six terms) for u(x). In

the approach of Silvester and Benedek and in the approach

of Gladwell and Coen, the evaluation of the elements of

the matrix representing the integral operator appearing in

(3) involves numerical quadrature and is far more com-

plicated than when using the substrip approximation in

conjunction with the collocation method.

III. A NEW GREEN’S FUNCTION TREATMENT OF

MICROSTRIP EDGE SINGULARITIES

In his consideration of the Fredholm integral equation

of the first kind defining the charge density on an in-

finitely long parallel-strip capacitor, Lean [11] wrote the

charge density on the capacitor strips as the sum of a

singular term, which corresponded to the first term of the

series given in (9), and a continuous term. He approxi-

mated the continuous term by a polynomial expansion and

employed the Rayleigh-Ritz method to determine the coef-

ficient of the singular term, i.e., CO, and the polynomial

expansion coefficients. He was able to calculate very accu-
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rate capacitances using very low order polynomial expan-

sions. An approach similar in spirit to Lean’s will here be

applied to (6).
Consider the function A(x) obtained from u(x) by

subtracting the first two terms of the series given in (9),

i.e.,

( )-1/2_ c,(:-x)l/2,A(x) =U(x)–co ;–x

O<x<; . (13)

Although U(X) cannot be well modeled by a low-order

unit-pulse expansion, it is hoped that A(x) can be. From

(6) and (13), it follows that A satisfies the integral equation

J((“2 G x–x’)+G(x +X’)) ~(X’)dX’

=l– COIO(X)– CII1(X), O<x<; (14)

where

l~(x)=~’2(G(x –x’)+G(x +x’))

()
w (2m - 1)/2

.—— dx’,
2 “

?n=o,l. (15)

From (4), it follows that

m = 0,1 (16)

where

]~n(x) =~’2(ln [(x - x’)2+4n2h2]

+ln[(x +x’)2+4n2h2])(~ -x’)(’~-l)’’dx’,

m= O,l; n= 0,1, ”””. (17)

The integrals 1~. (m= 0,1; n = 0,1,.0 “ ) can all be
evaluated analytically and easily coded into a computer

program.

Denote by Al, ” “ o, AN the expansion coefficients of an

Nth-order unit-pulse expansion for A(x). By substituting

this expansion into (14) and then applying the collocation

method, (14) can be reduced to a system of N equations in

N + 2 unknowns, these being X, (i= 1,-.-, N) and the

Motz expansion coefficients CO and cl. This system of

equations can be written in the following matrix form:

~ G,JAJ =1- COIO(XI)- Cl~l(XI), ~=l,...,~.

,=1

(18)

Here, x, is the midpoint of the ith unit pulse and

G,, = ~+Y’2 (G(xl -x’)+ G(.x, +X’)) dx’ (19)
x, — w] /2

where WJis the width of the jth unit pulse. Apart from the

two terms on the right-hand side involving 10 and 11, (18)

is the same as the matrix equation which would result if

the substrip approximation were applied in conjunction

with the collocation method to (6). If it is assumed that

over the region covered by the two unit pulses nearest the

edge of the strip conductor the charge density is accurately

represented by the first two terms of (9), then the expan-

sion coefficients corresponding to these two unit pulses,

say X ~ and X ~_ ~, can be set to zero. Thus, the number of

unknowns is reduced to N. The system of equations ob-

tained from (18) by setting A ~ and A ~_ ~ to zero can be

written in the following form:

~ A,lbJ =1, ~=l,...,~ (20)
~=i

where

b~=~,, j=l,. ..,2–2

bM_l = CO

b~ = Cl (
and

A,J = Gij, i=l,. . . ,N; j=l,. ..,2–2

AZ~_l = ~O(Xi), i=~,. ... N

A,~=~l(x,), i=l,. ... N. (22)

It should be noted that all of the elements of the matrix

A,J (i=l,. ... N; j=l,. . . , N) can be evaluated analyti-

cally and easily coded into a computer program. By solv-

ing (20), it is possible to determine CO, c1 and A, (i =

1,. . . , N – 2). Once these are known, the capacitance C

can be calculated as follows:

(21)

{
c=2~’2a(x)dx =2 cO~’2(~-x)-’’2dx

+cl~’2(:-x)1’2dx+ :$,w,)

‘4co(:)1’2+:c(i)3’2+2’23)
As an illustrative example, consider the application of

the method just described to a microstrip for which w/h = 3

and 6, = 10. Table I shows calculated values for C, C., and

20 obtained using a selection of N values. For each N, the

unit pulses used as expansion functions were all of equal

width (i.e., w, = w/2N, i = 1,. ... N); this corresponds to a

uniform discretization of the strip conductor. For purposes

of comparison, Table I also shows calculated values for C,

C., and 20 obtained by applying the substrip approxima-

tion in conjunction with the collocation method to equa-

tion (6). (This is referred to as the standard substrip

method in Table I.) From Table I, it is clear that the

method proposed in this paper is rapidly convergent. Even

for N =2, which corresponds to approximating the charge

density on the strip conductor by the first two terms of the

series given in (9), the characteristic impedance 20 is

correct to four figures. Comparable accuracy cannot be

achieved with the standard substrip method, even with

N = 480. Table 11 shows calculated values for C, C., 20

obtained using the nonuniform discretization scheme pro-

posed by Atsuki and Yamashita [19]. In this scheme, the

widths of the unit pulses used as expansion functions are
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TABLE I
CALCULATED MICROSTRIP (w/!-I =3. c.= 10) PARAMETERS:

modeling of coupled rnicrostrip, coplanar strips, and

covered versions of rnicrostrip, coupled microstrip, and

coplanar strips.
UNIFORM DISCRETIZATION

,
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Stmdmd wbatr] kethod

Z,(ohm)

26.9266

26.0751

25.7768

25,6249

25.5484

25.5099

25.4907

25.4810

25.4778

Newmethod

N

2
~

10

20

40

00

160

220

400

c(pFni’)

338.086

349.810

354.169

356,434

357.590

358.174

358.467

358.614

958.663

;,(PF16’)

45.2910

40.7806

47.2816

47.5394

47.6702

47.7361

47.7691

47.7057

47,7912

C(pnli’)

358.830

356.736

356.757

358.761

356.761

358.761

358.761

358.761

356.761

Ca(PFrn’)

47.7671

47.6001

47.6019

47.8022

47.8023

47,6023

47.6023

47.8023

47.0023

Z,(ohm)

25.4730

25.4728

25,4716

25.4714

25.4714

25.4714

25.4714

25.4714

25,4714

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

TABLE II
CALCULATED MICROSTtUP (w/h = 3, c.= 10) PARAMETERS:

NONUNIFO& DISCRETIhTION

New method

N

2
$

10

20

40

66

161

32I

48,

Standard sub8tri] method

2,(ohm)

26.3482

25.6306

25.5120

25.4619

25.4740

25.4720

25.4715

25.4714

25.4714

C(PFni’)

345.975

356.355

358.130

356,600

356.720

356.751

356.759

358.761

258.761

:a(pFrn’)

46.3246

47.5291

47.7310

47.7641

47.7977

47.6011

47.8020

47.6022

47.8022

C(pFrn’)

358.623

358.764

356.762

356.761

358.761

356.761

356.761

356.761

358.781

Cl(PFmi)

47.7943

47.8020

47.6022

47.6023

47.8023

47.0023

47.0023

47.0029

47.8023

Z,(ohm]

25.4713

25.4713

25.4714

25.4714

25.4714

25.4714

35.4714

35,4714

25.4714

given by

‘=:(sin(asin((i~:)m))‘=1”””:24)[13]

[14]

[15]

The rate of convergence of the standard substrip method is

far greater when using the above nonuniform discreti-

zation scheme than when using the uniform discretization

scheme. The accuracy obtained with N = 40 using the

nonuniform discretization scheme is greater than the accu-

racy obtained with N = 480 using the uniform discreti-

zation scheme. The rate of convergence of the method

proposed in this paper, which is already very good using

the uniform discretization scheme, is also improved by

using the nonuniform discretization scheme given by (24)

and, as can be seen from Table II, is fm greater than the

rate of convergence of the standard substrip method using

the discretization scheme given by (24). The observations

made above are consistent with the conclusion made by

others [2], [5], [6], [12], [13] that accurate modeling of

microstrip edge singularities can lead to substantial reduc-

tions in computational storage and time requirements.
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IV. CONCLUSIONS

In this paper, a new Green’s function approach, incor-

porating an accurate treatment of edge singularities, to the

quasi-TEM analysis of open rnicrostrip has been pre-

sented. It is seen that this approach is both easy to

implement and rapidly convergent, thus making it an

excellent choice for use in microwave CAD packages. The

ideas developed in this work can be easily extended to the
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