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Green’s Function Treatment of Edge
Singularities in the Quasi-TEM
Analysis of Microstrip
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Abstract — A new Green’s function approach to the quasi-TEM analysis
of microstrip is presented. By expressing the charge density on the strip
conductor as the sum of a singular term, derived from the consideration of
a Motz expansion, and a continuous term, the integral equation defining
this charge density is transformed into an integral equation for the
continuous term. An accurate numerical solution to this new integral
equation can be obtained by approximating the continuous term by a
low-order unit-pulse expansion. It is seen that the numerical scheme
developed in this work is both easy to implement and rapidly convergent,
thus making it an excellent choice for use in microwave CAD packages.

I. INTRODUCTION

NDER THE ASSUMPTIONS that loss is negligible
and that the mode of propagation is quasi-TEM, the
characteristic impedance Z; of microstrip is given by [1]

1
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where ¢ is the velocity of light in free space, C is the
electrostatic capacitance per unit length of microstrip, and
C, is the electrostatic capacitance per unit length of the
structure obtained from microstrip by replacing the dielec-
tric substrate with air. A wide variety of methods have
been used for the numerical evaluation of C and C, for
both open and shielded microstrip (see, for example, [1]-[8]
and the references cited therein). If sufficient computing
resources are available, any of the methods cited above can
be used to generate accurate design tables or design curves
which relate Z, to the substrate dielectric constant and
line dimensions. In view of the current interest in the
computer-aided design (CAD) of microwave integrated
circuits (both hybrid and monolithic) [9], attention is
focusing on numerical methods which are not only capable
of the accurate one-off calculation of Z, but are also well
suited for use as part of a fast and flexible microwave
CAD package. Green’s function techniques have been
successfully used in microstrip analysis programs [10] and
thus appear to be good choices for use in general-purpose
microwave CAD packages.

In the mathematical modeling of microstrip, the strip
conductor is often taken to be of zero thickness. It is well
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known from the study of Motz expansions [11] that at the
edges of such a mathematically idealized strip both the
charge density and the electric field are singular. In the
application of numerical techniques to problems involving
edge singularities, special consideration of the singularities
can often greatly speed the rate of convergence [2], [3], [5],
[6]. [12], [13]. By employing an analytic approximation for
the charge density near the edge of the strip conductor, a
new Green’s function approach to the numerical analysis
of microstrip is developed in this paper. It is seen that this
new approach is both rapidly convergent and easy to
implement, thus making it an excellent choice for use in
microwave CAD packages.

II. THe GREEN’S FUNCTION TECHNIQUE

For an open microstrip of zero thickness (see Fig. 1), the
capacitance C can be expressed as

c= """ o(x)dx ()
where the charge density o(x) is the solution of the follow-
ing Fredholm integral equation of the first kind:
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Here, the kernel G(x ~ x’) is given by [14]
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where K, referred to as the partial image coefficient, is
given by

n=1
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(5)

By exploiting the symmetry of the microstrip structure
about the line x = 0 (6(x) = a(— x)). eq. (3) reduces to

fo“'/z(G(x —x)+ G(x +x))o(x) dx' =1,

w
O0<x<g—
= = .
2
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Fig. 1. Cross section of open microstrip.

The capacitance C, can also be defined via the integral
appearing on the right-hand side of (2). However, in this
case, the charge density o(x) is the solution of the
Fredholm integral equation of the first kind obtained from
(3) (or (6)) by replacing the kernel G(x — x’) with the
kernel G,(x — x'), given by

G(x—x")= #610 {21n|x - x'|—ln[(x - x')2+4h2] }
(7)

G, is simply the Green’s function for the classical image
problem.

The ideas to be discussed in the rest of this paper hold
true for the calculation of both C and C,. Thus, only the
calculation of C need be considered explicitly. General
methods for the numerical solution of integral equations of
the type described above are well known (see, for example,
Lean et al. [15]). In essence, these methods involve the
approximation of o(x) by a finite sum of the form

o(x)= ;a,u,(x) (8)

where u,(x) (i=1,---,N) is a set of known orthogonal
expansion functions and a; (i=1,---, N) is a set of un-
known coefficients which are to be determined. The a,
(i=1,---, N)values are determined by first replacing o(x)
in the integral equation (3) (or (6)) by the sum given in (8).
The integral equation is then reduced, using some standard
method such as method of moments or Rayleigh-Ritz, to a
system of N linear simultaneous equations for a, (i=
1,---, N). This system of equations can be easily solved
using standard methods (e.g., Crout factorization [16]).
Once the a, (i=1,: -+, N) values are known, an approxi-
mation to o(x) can be obtained from (8).

Taking u,(x) (i=1,---,N) to be a set of unit pulses
gives rise to a piecewise constant approximation to o(x).
This widely used approximation [14], [17], [18] is fre-
quently referred to as the substrip approximation. If the
substrip approximation is used in conjunction with the
collocation method, then the elements of the matrix repre-
senting the integral operator appearing in (3) (or (6)) can
be evaluated analytically and easily coded into a computer
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program. The charge density on the strip conductor ex-
hibits the following behavior [11]

o)~ X (5w

Y 9
¥ oal; aslx|~> >~ (9)

where the ¢, (=0, --) values are constants. The first
two terms of the above series both vary rapidly as |x|—
w/2—; thus, ¢(x) cannot be well modeled by a low-order
unit-pulse expansion. This explains why the substrip ap-
proximation converges only slowly with increasing N.

In order to accurately model the singular behavior of the
charge density near the edge of the strip conductor,
Silvester and Benedek [12] made the following choice for
u,(x):

fi2x/w)

EEk

S ST
filx) =1. (11)

By employing the method of moments with even-crder
Legendre polynomials as weighting functions, they were
able to calculate reasonably accurate C values using only a
two-term series approximation for a(x) (i.e., N =2). Simi-
lar in spirit to the work of Silvester and Benedek is the
work of Gladwell and Coen [13]. The latter applied
Galerkin’s method using the following expansion functions

u (x) = T2,(2x/w) ‘ (12)

where T, is the Chebyshev polynomial of the 2ith order.
They were above to calculate accurate C values using
fow-order series approximations ( < six terms) for ¢(x). In
the approach of Silvester and Benedek and in the approach
of Gladwell and Coen, the evaluation of the elements of
the matrix representing the integral operator appearing in
(3) involves numerical quadrature and is far more com-
plicated than when using the substrip approximation in
conjunction with the collocation method.

u,(x) = (10)

where

-1
f(x) =TI

i=0,1,--

III. A NEw GREEN’S FUNCTION TREATMENT OF
MICROSTRIP EDGE SINGULARITIES

In his consideration of the Fredholm integral equation
of the first kind defining the charge density on an in-
finitely long parallel-strip capacitor, Lean [11] wrote the
charge density on the capacitor strips as the sum of a
singular term, which corresponded to the first term of the
series given in (9), and a continuous term. He approxi-
mated the continuous term by a polynomial expansion and
employed the Rayleigh-Ritz method to determine the coef-
ficient of the singular term, i.e., ¢;, and the polynomial
expansion coefficients. He was able to calculate very accu-
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rate capacitances using very low order polynomial expan-
sions. An approach similar in spirit to Lean’s will here be
applied to (6).

Consider the function A(x) obtained from o(x) by
subtracting the first two terms of the series given in (9),

}\(x)=o(x)—c0(%—x)ﬂl/2—cl( )1/2,

O<x<o. (13
<x<5. )

Although o(x) cannot be well modeled by a low-order
unit-pulse expansion, it is hoped that A(x) can be. From
(6) and (13), it follows that A satisfies the integral equation

/W/Z(G(x x')+ G(x+ x))A(x') dx’

N[€

“1-eolo(x) - eh(x),  O<x<s (14)
where
I,(x)= LW/Z(G(x - x)+G(x+x"))
W @m-1)/2
-(E—x’) dx', m=0,1. (15)
From (4), it follows that
(0 =S5 £ k()= L),
m=0,1 (16)

where

() = [

ln [(x x) +4n2h2]

dx’,

m=0,1; n=0,1,---. (17)

The integrals I,, (m=0,1; n=0,1,---) can all be
evaluated analytically and easily coded into a computer
program.

Denote by A,,---, A, the expansion coefficients of an
Nth-order unit-pulse expansion for A(x). By substituting
this expansion into (14) and then applying the collocation
method, (14) can be reduced to a system of N equations in
N +2 unknowns, these being A, (i=1,---,N) and the
Motz expansion coefficients ¢, and c¢;. This system of
equations can be written in the following matrix form:

+In [(x + x’)2+4n2h2])(—;)— - x')(zm e

N
Y G A =1-

;=1

i=1,---,N.

(18)

COIO(xz)h Clll(x1)1

Here, x, is the midpoint of the ith unit pulse and

G,j=fx+w/2(G(x X))+ G(x,+x)) dx' (19)

X —w/2

where w, is the width of the jth unit pulse. Apart from the
two terrns on the right-hand side involving I, and I;. (18)
is the same as the matrix equation which would result if
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the substrip approximation were applied in conjunction
with the collocation method to (6). If it is assumed that
over the region covered by the two unit pulses nearest the
edge of the strip conductor the charge density is accurately
represented by the first two terms of (9), then the expan-
sion coefficients corresponding to these two unit pulses,
say Ay and A, _;, can be set to zero. Thus, the number of
unknowns is reduced to N. The system of equations ob-
tained from (18) by setting A and A, _; to zero can be
written in the following form:

N
Y A4,b=1 i=1-

N (20)
J=1
where
bj=)\j, j=1---,N=-2
by_1=c¢
by=c¢ 21
and Vo ( )
Au=Gij’ i=1,--+,N; j=1,---,N-2
AtN—1=IO(xi)> i=1,---,N
Ay=1I(x), i=1,+,N. (22)

It should be noted that all of the elements of the matrix
A4, (i=1,---,N; j=1,---,N) can be evaluated analyti-
cally and easily coded into a computer program. By solv-
ing (20), it is possible to determine ¢, ¢; and A, (i=
1,---, N—2). Once these are known, the capacitance C
can be calculated as follows:

w w2 W —-1/2
C=2f0 /zo(x)dx =2<cof0 /Z(E—x) dx

W 1/2 N-2
+c1/(; ﬂ(;——x) ax+ Y A,wl}
=1

N-2

wiyl/2 4 w\3/2
=4CO(5) +§Cl(5) +2l§1 }\lwl.

(23)

As an illustrative example, consider the application of
the method just described to a microstrip for which w/# =3
and ¢, =10. Table I shows calculated values for C, C,, and
Z, obtained using a selection of N values. For each N, the
unit pulses used as expansion functions were all of equal
width (i.e., w,=w/2N, i =1, -+, N)); this corresponds to a
uniform discretization of the strip conductor. For purposes
of comparison, Table I also shows calculated values for C,
C,, and Z, obtained by applying the substrip approxima-
tion in conjunction with the collocation method to equa-
tion (6). (This is referred to as the standard substrip
method in Table 1) From Table I, it is clear that the
method proposed in this paper is rapidly convergent. Even
for N =2, which corresponds to approximating the charge
density on the strip conductor by the first two terms of the
series given in (9), the characteristic impedance Z, is
correct to four figures. Comparable accuracy cannot be
achieved with the standard substrip method, even with

= 480. Table II shows calculated values for C, C,, Z
obtained using the nonuniform discretization scheme pro-
posed by Atsuki and Yamashita [19]. In this scheme, the
widths of the unit pulses used as expansion functions are
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TABLE I
CALCULATED MICROSTRIP (w/h =3, ¢, =10) PARAMETERS:
UNIFORM DISCRETIZATION

Standard substrip method New method
N C{pFui') | C(pFm') | Z,(ohm} | C(pFui*) | C (pFri’) | Z,(ohm)
2 3306.086 | 45.3910 | 26.9286 | 358.830 | 47.7871 | 25.4730
5 348.816 46.7806 28.0751 358.738 47.8001 25.4728
10 154.169 47.2818 25.7768 358.757 47.8019 25,4716
20 | 356,434 | 47.5394 | 25.6249 | 358.761 | 47.8022 | 25.4714
40 357.590 47.6702 25,5484 358.761 47.8023 25.4714
80 358.174 47.7361 25.5099 358.761 |. 47,8023 25.4714
160 | 358.467 47.7801 25.4907 358.761 47.8023 25.4714
320 | 358.614 47.7857 25.4810 358.761 47.8023 25.4714
480 358.663 47.7912 25.4778 358.761 47.8023 26,4714
TABLE II

CALCULATED MICROSTRIP (w/h = 3, €, =10) PARAMETERS:
NONUNIFORM DISCRETIZATION

Standard subsirip method New method
N C(pFui’) | C,(pF'} | Z,(obm) | C(pPu’) | C,(pFui') | Z,(obin)
2 345.875 | 46.3246 | 28,3482 | 358.823 | 47.7943 | 25.4713
) 356.355 | 47.5291 | 25.6306 | 358.764 | 47.8020 | 25.4713
10 | 358.130 | 47.7310 | 25:5128 | 358.762 | 47.8022 | 25.4714
20 | 358.600 | 47.7841 | 25.4019 | 358.761 | 47.8023 | 25.4714
40 358.720 477977 25.4740 358.761 47.8023 25.4714
80 358.751 47.8011 25.4720 358.761 47.8023 25.4714
160.| 358.750 | 47.8020 | 25.4715 | 358781 | 47.8023 | 25.4714
320 | 358.761 | 47.8022 | 25.4714 | 358.761 | 47.8023 | 25.4714
480 | 358.761 | 47.8022 | 25.4714 | 358,781 | 47.8023 | R5.4714
given by

{5,

The rate of convergence of the standard substrip method is
far greater when using the above nonuniform discreti-
zation scheme than when using the uniform discretization
scheme. The accuracy obtained with N =40 using the
nonuniform discretization scheme is greater than the accu-
racy obtained with N =480 using the uniform discreti-
zation scheme. The rate of convergence of the method
proposed in this paper, which is already very good using
the uniform discretization scheme, is also improved by
using the nonuniform discretization scheme given by (24)
and, as can be seen from Table II, is far greater than the
rate of convergence of the standard substrip method using
the discretization scheme given by (24). The observations
made above are consistent with the conclusion made by
others [2], [5], [6], [12], [13] that accurate modeling of
microstrip edge singularities can lead to substantial reduc-
tions in computational storage and time requirements.

IV. CoNcLUsIONS

In this paper, a new Green’s function approach, incor-
porating an accurate treatment of edge singularities, to the
quasi-TEM analysis of open microstrip has been pre-
sented. It is seen that this approach is both easy to
implement and rapidly convergent, thus making it an
excellent choice for use in microwave CAD packages. The
ideas developed in this work can be easily extended to the
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modeling of coupled microstrip, coplanar strips, and

covered versions of microstrip, coupled microstrip, and
coplanar strips.
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